Relation between scattering amplitude and

Bethe-Salpeter wave function in quantum field theory

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

In collaboration with Y. Kuramashi

Reference: TY and Kuramashi, PRD96:114511,11(2017)

Lattice 2018 @ Kellogg Hotel & Conference Center, July 22-28 2018

Purpose

(re)introduce a simple relation between scattering amplitude and Bethe-Salpeter (BS) wave function inside interaction range R rather than HALQCD method

Outline

- Wave function in finite volume method
- ullet BS wave function outside R
- BS wave function inside R
- Fundamental relation in quantum mechanics
- Expansion of reduced BS wave function
- Summary

Lüscher's finite volume method

[Lüscher, NPB354:531(1991)]

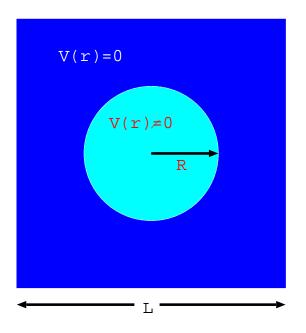
spinless two-particle elastic S-wave scattering in center of mass frame Quantum mechanics

Important assumption

- 1. Two-particle interaction is localized.
 - \rightarrow Interaction range R exists.

$$V(r) \begin{cases} \neq 0 & (r \leq R) \\ = 0 & (\sim e^{-cr})(r > R) \end{cases}$$

2. V(r) is not affected by boundary. $\rightarrow R < L/2$



Two-particle wave function $\phi(\vec{r}; k)$ in r > R satisfies Helmholtz equation.

$$(\Delta + k^2) \phi(\vec{r}; k) = 0 \text{ in } r > R, \quad E_k = 2\sqrt{m^2 + k^2}$$

Lüscher's finite volume method

[Lüscher, NPB354:531(1991)]

Helmholtz equation on L^3

1. Solution of $(\Delta + k^2)\phi(\vec{r}; k) = 0$ in r > R

$$\phi(\vec{r};k) = G(\vec{r};k) = C \cdot \sum_{\vec{n} \in Z^3} \frac{e^{i\vec{r} \cdot \vec{n}(2\pi/L)}}{\vec{n}^2 - q^2}, \quad q^2 = (Lk/2\pi)^2 \neq \text{integer}$$

2. Expansion by spherical Bessel $j_l(kr)$ and Neumann $n_l(kr)$ functions

$$\phi(\vec{r};k) = \beta_0(k)n_0(kr) + \alpha_0(k)j_0(kr) + (l \ge 4)$$

= $e^{i\delta(k)}\sin(kr + \delta(k))/kx + (l \ge 4)$

3. S-wave scattering phase shift $\delta(k)$ in infinite volume

$$\frac{\beta_0(k)}{\alpha_0(k)} = \left| \tan \delta(k) = \frac{\pi^{3/2} q}{Z_{00}(1; q^2)} \right| Z_{00}(s; q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n} \in \mathbb{Z}^3} \frac{1}{(\vec{n}^2 - q^2)^s}$$

Relation between
$$\delta(k)$$
 and k $\left(E_k = 2\sqrt{m^2 + k^2}\right)$ $\phi(\vec{r};k)$ disappears in final formula.

BS wave function through LSZ reduction formula

Quantum field theory

[Lin et al., NPB619:467(2001)]

BS wave function of two pions in infinite volume (Only S-wave)

$$\phi(x;k) = \langle 0|\pi_1(\vec{x}/2)\pi_2(-\vec{x}/2)|\pi_1(\vec{k})\pi_2(-\vec{k}); \text{in} \rangle$$

Inelastic scattering contribution and unnecessary overall factors are neglected.

NOT exactly same as one in BS equation

 $\phi(x;k)$ from 4-point correlation function $C(\vec{x},t)$ on lattice

$$C(\vec{x}, t - t_s) = \langle 0 | \pi_1(\vec{x}/2, t) \pi_2(-\vec{x}/2, t) \Omega_{\pi\pi}(t_s) | 0 \rangle$$
$$= \sum_k C_k \phi(x; k) e^{-E_k(t - t_s)}$$

where $\Omega_{\pi\pi}(t_s) = \text{two-pion operator}, C_k = \langle 0 | \Omega_{\pi\pi}(0) | E_k \rangle$

BS wave function through LSZ reduction formula

Quantum field theory

[Lin et al., NPB619:467(2001)]

BS wave function of two pions in infinite volume (Only S-wave)

$$\phi(x;k) = \langle 0|\pi_1(\vec{x}/2)\pi_2(-\vec{x}/2)|\pi_1(\vec{k})\pi_2(-\vec{k}); \text{in} \rangle$$

$$= e^{i\vec{k}\cdot\vec{x}} + \int \frac{d^3p}{(2\pi)^3} \frac{H(p;k)}{p^2 - k^2 - i\epsilon} e^{i\vec{p}\cdot\vec{x}}$$

Inelastic scattering contribution and unnecessary overall factors are neglected.

NOT exactly same as one in BS equation

Half off-shell amplitude H(p; k)

$$H(p;k) = \frac{E_p + E_k}{8E_p E_k} M(p;k)$$

M(p;k) defined by LSZ reduction formula

$$e^{-i\mathbf{q}\cdot\mathbf{x}} \frac{-i\sqrt{Z}M(p;k)}{-\mathbf{q}^{2} + m^{2} - i\varepsilon} = \int d^{4}z d^{4}y_{1} d^{4}y_{2} K(\mathbf{p}, \mathbf{z}) K(-\mathbf{k}_{1}, \mathbf{y}_{1}) K(-\mathbf{k}_{2}, \mathbf{y}_{2}) G_{4}(\mathbf{z}, \mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{2})$$

$$K(\mathbf{p}, \mathbf{z}) = \frac{i}{\sqrt{Z}} e^{i\mathbf{p}\cdot\mathbf{z}} (-\mathbf{p}^{2} + m^{2}), \quad G_{4}(\mathbf{z}, \mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{2}) = \langle 0 | T[\pi_{1}(\mathbf{z})\pi_{2}(\mathbf{x})\pi_{1}(\mathbf{y}_{1})\pi_{2}(\mathbf{y}_{2}) | 0 \rangle$$

$$\mathbf{p} = (E_{p}, \vec{p}), \quad \mathbf{k}_{1} = (E_{k}, \vec{k}), \quad \mathbf{k}_{2} = (E_{k}, -\vec{k}), \quad \mathbf{q} = (2E_{k} - E_{p}, -\vec{p})$$
off-shell momentum

BS wave function through LSZ reduction formula

Quantum field theory

[Lin et al., NPB619:467(2001)]

BS wave function of two pions in infinite volume (Only S-wave)

$$\phi(x;k) = \langle 0|\pi_1(\vec{x}/2)\pi_2(-\vec{x}/2)|\pi_1(\vec{k})\pi_2(-\vec{k}); \text{in} \rangle$$

$$= e^{i\vec{k}\cdot\vec{x}} + \int \frac{d^3p}{(2\pi)^3} \frac{H(p;k)}{p^2 - k^2 - i\epsilon} e^{i\vec{p}\cdot\vec{x}}$$

Inelastic scattering contribution and unnecessary overall factors are neglected.

NOT exactly same as one in BS equation

Half off-shell amplitude H(p; k)

$$H(p;k) = \frac{E_p + E_k}{8E_p E_k} M(p;k)$$

M(p;k) at on-shell p=k

$$M(k;k) = \frac{16\pi E_k}{k} e^{i\delta(k)} \sin \delta(k) \Rightarrow H(k;k) = \frac{4\pi}{k} e^{i\delta(k)} \sin \delta(k)$$

Quantum field theory

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k)$$

Assumption: h(x; k) = 0 outside interaction range (x > R) c.f. $(\Delta + k^2)\phi(x; k) = mV(x)\phi(x; k)$ in quantum mechanics

Using the assumption and
$$\phi(x;k) = e^{i\vec{k}\cdot\vec{x}} + \int \frac{d^3p}{(2\pi)^3} \frac{H(p;k)}{p^2 - k^2 - i\epsilon} e^{i\vec{p}\cdot\vec{x}}$$
 in $x > R$

$$\phi(x;k) = e^{i\delta(k)} \frac{\sin(kx + \delta(k))}{kx}$$

agrees with wave function in quantum mechanics

Following derivation in quantum mechanics,

finite volume formula can be derived from BS wave function.

Quantum field theory

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k)$$

Assumption: h(x; k) = 0 outside interaction range (x > R) c.f. $(\Delta + k^2)\phi(x; k) = mV(x)\phi(x; k)$ in quantum mechanics

I = 2 S-wave two-pion BS wave function

- assumption is valid in lattice QCD
- $-\ k^2$ from $\phi(r;k)$ in r>R $\text{using } G(\vec{r};k) \text{: Solution of Helmholtz equation on } L^3$

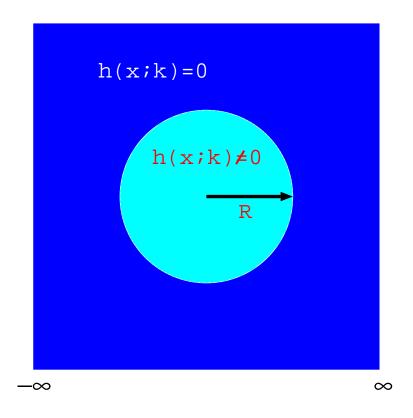
 $\phi(x;k)$ r > R can be used for calculation of $\delta(k)$.

Our results

[TY and Kuramashi, PRD96:114511,11(2017)]

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k)$$



[TY and Kuramashi, PRD96:114511,11(2017)]

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k) = -\int \frac{d^3p}{(2\pi)^3} e^{i\vec{p}\cdot\vec{x}} H(p;k)$$
$$\therefore \phi(x;k) = e^{i\vec{k}\cdot\vec{x}} + \int \frac{d^3p}{(2\pi)^3} \frac{H(p;k)}{p^2 - k^2 - i\epsilon} e^{i\vec{p}\cdot\vec{x}}$$



[TY and Kuramashi, PRD96:114511,11(2017)]

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k) = -\int \frac{d^3p}{(2\pi)^3} e^{i\vec{p}\cdot\vec{x}} H(p;k)$$

[TY and Kuramashi, PRD96:114511,11(2017)]

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k) = -\int \frac{d^3p}{(2\pi)^3} e^{i\vec{p}\cdot\vec{x}} H(p;k)$$

↓ Fourier transformation

Fundamental relation in this talk

$$H(p;k) = -\int d^3x \ e^{-i\vec{p}\cdot\vec{x}}h(x;k)$$

Relation between H(p;k) and h(x;k) i.e. $\phi(x;k)$ inside R

[TY and Kuramashi, PRD96:114511,11(2017)]

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k) = -\int \frac{d^3p}{(2\pi)^3} e^{i\vec{p}\cdot\vec{x}} H(p;k)$$

Fundamental relation in this talk

$$H(p;k) = -\int d^3x \ e^{-i\vec{p}\cdot\vec{x}}h(x;k)$$

Relation between H(p;k) and h(x;k) i.e. $\phi(x;k)$ inside R

At on-shell p = k

c.f. [CP-PACS, PRD71:094504(2005)]

$$H(k;k) = \frac{4\pi}{k}e^{i\delta(k)}\sin\delta(k) = -\int d^3x \ e^{-i\vec{k}\cdot\vec{x}}h(x;k)$$

h(x;k) is essential to calculate H(p;k).

[TY and Kuramashi, PRD96:114511,11(2017)]

Reduced BS wave function

$$h(x;k) = (\Delta + k^2)\phi(x;k) = -\int \frac{d^3p}{(2\pi)^3} e^{i\vec{p}\cdot\vec{x}} H(p;k)$$

Fundamental relation in this talk

$$H(p;k) = -\int d^3x \ e^{-i\vec{p}\cdot\vec{x}}h(x;k)$$

Relation between H(p; k) and h(x; k) i.e. $\phi(x; k)$ inside R can be used for calculation on finite volume

Exploratory study with fundamental relation

→ Next talk by Namekawa

Fundamental relation in quantum mechanics

[TY and Kuramashi, PRD96:114511,11(2017)]

Interpretation of HALQCD method in this frame work

V(x;k) is defined by h(x;k) as

$$V(x;k) = \begin{cases} \frac{1}{m} \frac{h(x;k)}{\phi(x;k)} & (x \le R) \\ 0 & (x > R) \end{cases}$$

corresponding to LO HALQCD method

V(x;k) is regarded as potential in Shrödinger equation.

$$(\Delta + p^2)\overline{\phi}(x; p) = mV(x; k)\overline{\phi}(x; p)$$

 $\overline{\phi}(x;p)$ is a solution of the equation with given p.

Scattering phase shift $\overline{\delta}(p)$ from Shrödinger equation

[textbook of quantum mechanics]

$$\frac{e^{i\overline{\delta}(p)}\sin\overline{\delta}(p)}{p} = -\frac{m}{4\pi} \int d^3x \, e^{-i\vec{p}\cdot\vec{x}} V(x;k) \overline{\phi}(x;p)$$

Fundamental relation in quantum mechanics

[TY and Kuramashi, PRD96:114511,11(2017)]

Scattering phase shift $\overline{\delta}(p)$ from Shrödinger equation

$$\frac{e^{i\overline{\delta}(p)}\sin\overline{\delta}(p)}{p} = -\frac{1}{4\pi} \int d^3x \, e^{-i\vec{p}\cdot\vec{x}} \frac{h(x;k)}{\phi(x;k)} \overline{\phi}(x;p)$$

At
$$p = k$$
, $\overline{\phi}(x;k) = \phi(x;k)$ $\therefore (\Delta + k^2)\phi(x;k) = h(x;k)$

$$\frac{e^{i\overline{\delta}(k)}\sin\overline{\delta}(k)}{k} = -\frac{1}{4\pi}\int d^3x \, e^{-i\vec{k}\cdot\vec{x}}h(x;k) = \frac{H(k;k)}{4\pi} = \frac{e^{i\delta(k)}\sin\delta(k)}{k}$$

$$\overline{\delta}(k) = \delta(k)$$

At $p \neq k$, $\overline{\phi}(x; p) \neq \phi(x; k)$ in general

$$\frac{e^{i\overline{\delta}(p)}\sin\overline{\delta}(p)}{p} = -\frac{1}{4\pi}\int d^3x \, e^{-i\vec{p}\cdot\vec{x}}\frac{h(x;k)}{\phi(x;k)}\overline{\phi}(x;p) \neq \frac{e^{i\delta(p)}\sin\delta(p)}{p}$$

Same $\delta(k)$ is obtained at only p = k, where V(x; k) is defined.

Above discussion corresponding to LO HALQCD method

[TY and Kuramashi, PRD96:114511,11(2017)]

Derivative expansion in HALQCD method

$$h(x;k) = (\Delta + k^2)\phi(x;k)$$

$$= \sum_{n=0}^{\infty} V_n(x)\Delta^n\phi(x;k), \quad V_n(x) \text{ independent of } k$$
[HALQCD, PTEP2018:043B04(2018)]

Convergence of expansion is unclear.

→ Large number of terms would be necessary in general.

A few terms are not enough for convergence test.

c.f.) convergent test with two terms [HALQCD, arXiv:1805.02365]

[TY and Kuramashi, PRD96:114511,11(2017)]

Derivative expansion in HALQCD method

$$h(x;k) = \sum_{n=0}^{\infty} V_n(x) \Delta^n \phi(x;k), \quad V_n(x) \text{ independent of } k$$
[HALQCD, PTEP2018:043B04(2018)]

Truncated in practical determination of $V_n(x)$

 $\rightarrow V_n(x)$ depends on input k.

Approximation $h(x; k) = V_0(x) + V_1(x) \Delta \phi(x; k)$ with inputs $h(x; k_1), h(x; k_2)$

$$V_0(x) = \frac{k_1^2 \phi(x; k_1) h(x; k_2) - k_2^2 \phi(x; k_2) h(x; k_2)}{\phi(x; k_1) h(x; k_2) - \phi(x; k_2) h(x; k_1) + \phi(x; k_1) \phi(x; k_2) (k_1^2 - k_2^2)}$$

$$V_1(x) = \frac{\phi(x; k_1) h(x; k_2) - \phi(x; k_2) h(x; k_1)}{\phi(x; k_1) h(x; k_2) - \phi(x; k_2) h(x; k_1) + \phi(x; k_1) \phi(x; k_2) (k_1^2 - k_2^2)}$$

 $V_0(x), V_1(x)$ change with k_1, k_2 .

[TY and Kuramashi, in preparation]

time-dependent HALQCD method [HALQCD, PLB712:437(2012)]

4-point function with different operator $n = 1, \dots, N_O$

$$C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)\phi_{\alpha}(x), \quad A_{i\alpha}(t) = B_{i\alpha}e^{-E_{\alpha}t}, \phi_{\alpha}(x) = \phi(x; k_{\alpha})$$

Truncated approximation
$$h_{\alpha}(x) = h(x; k_{\alpha}) = \sum_{n=0}^{N_V-1} V_n(x) \Delta^n \phi_{\alpha}(x)$$

Common $V_n(x)$ in all α

Simultaneous equations

$$M(x,t)V(x) = (\Delta + f(\partial_t))C(x,t)$$

$$(\Delta + f(\partial_t))C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)h_{\alpha}(x), \quad f(\partial_t)A_{i\alpha}(t) = k_{\alpha}^2 A_{i\alpha}(t)$$
$$M_{in}(x,t) \equiv \Delta^n C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)\Delta^n \phi_{\alpha}(x)$$

[TY and Kuramashi, in preparation]

time-dependent HALQCD method [HALQCD, PLB712:437(2012)]

4-point function with different operator $n = 1, \dots, N_O$

$$C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)\phi_{\alpha}(x), \quad A_{i\alpha}(t) = B_{i\alpha}e^{-E_{\alpha}t}, \phi_{\alpha}(x) = \phi(x; k_{\alpha})$$

Truncated approximation
$$h_{\alpha}(x) = h(x; k_{\alpha}) = \sum_{n=0}^{N_{V}-1} V_{n}(x) \Delta^{n} \phi_{\alpha}(x)$$

Common $V_{n}(x)$ in all α

Simultaneous equations

itions
$$(\Delta+f(\partial_t))C_i(x,t)=\sum_{lpha=1}^{N_lpha}A_{ilpha}(t)h_lpha(x)$$
 $M(x,t)V(x)=A(t)h(x)$ $M_{in}(x,t)\equiv\Delta^nC_i(x,t)$

$$M(x,t)V(x) = A(t)h(x)$$
 $M_{in}(x,t) \equiv \Delta^n C_i(x,t)$

$$[N_O \times N_V][N_V] = [N_O \times N_\alpha][N_\alpha]$$

sizes for matrices and vectors

[TY and Kuramashi, in preparation]

time-dependent HALQCD method [HALQCD, PLB712:437(2012)]

4-point function with different operator $n = 1, \dots, N_O$

$$C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)\phi_{\alpha}(x), \quad A_{i\alpha}(t) = B_{i\alpha}e^{-E_{\alpha}t}, \phi_{\alpha}(x) = \phi(x; k_{\alpha})$$

Truncated approximation
$$h_{\alpha}(x) = h(x; k_{\alpha}) = \sum_{n=0}^{N_V-1} V_n(x) \Delta^n \phi_{\alpha}(x)$$

Common $V_n(x)$ in all α

Simultaneous equations

$$M(x,t)V(x) = A(t)h(x) \qquad M_{in}(x,t) \equiv \Delta^{n}C_{i}(x,t)$$
$$[N_{O} \times N_{V}][N_{V}] = [N_{O} \times N_{\alpha}][N_{\alpha}]$$

sizes for matrices and vectors

Necessary condition to determine V(x)

$$N_O = N_V \text{ for } (M(x,t))^{-1}$$

[TY and Kuramashi, in preparation]

time-dependent HALQCD method [HALQCD, PLB712:437(2012)]

4-point function with different operator $n = 1, \dots, N_O$

$$C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)\phi_{\alpha}(x), \quad A_{i\alpha}(t) = B_{i\alpha}e^{-E_{\alpha}t}, \phi_{\alpha}(x) = \phi(x; k_{\alpha})$$

Truncated approximation
$$h_{\alpha}(x) = h(x; k_{\alpha}) = \sum_{n=0}^{N_V-1} V_n(x) \Delta^n \phi_{\alpha}(x)$$

Common $V_n(x)$ in all α

Simultaneous equations

$$M(x,t)V(x) = A(t)h(x) \qquad M_{in}(x,t) \equiv \Delta^{n}C_{i}(x,t)$$
$$[N_{O} \times N_{V}][N_{V}] = [N_{O} \times N_{\alpha}][N_{\alpha}]$$

sizes for matrices and vectors

Necessary condition to determine V(x)

$$N_O = N_V$$
 for $(M(x,t))^{-1}$ and $N_O = N_\alpha$ for $(A(t))^{-1}$ otherwise operator dependence remains in $V(x)$.

[TY and Kuramashi, in preparation]

time-dependent HALQCD method [HALQCD, PLB712:437(2012)]

4-point function with different operator $n = 1, \dots, N_O$

$$C_i(x,t) = \sum_{\alpha=1}^{N_{\alpha}} A_{i\alpha}(t)\phi_{\alpha}(x), \quad A_{i\alpha}(t) = B_{i\alpha}e^{-E_{\alpha}t}, \phi_{\alpha}(x) = \phi(x; k_{\alpha})$$

Truncated approximation
$$h_{\alpha}(x) = h(x; k_{\alpha}) = \sum_{n=0}^{N_{V}} V_{n}(x) \Delta^{n} \phi_{\alpha}(x)$$
Common $V_{n}(x)$ in all α

Simultaneous equations

$$M(x,t)V(x) = A(t)h(x) \qquad M_{in}(x,t) \equiv \Delta^{n}C_{i}(x,t)$$
$$[N_{O} \times N_{V}][N_{V}] = [N_{O} \times N_{\alpha}][N_{\alpha}]$$

sizes for matrices and vectors

Necessary condition to determine V(x)

$$N_O = N_V$$
 for $(M(x,t))^{-1}$ and $N_O = N_\alpha$ for $(A(t))^{-1}$ otherwise operator dependence remains in $V(x)$.

the same condition for generalized eigenvalue problem need data in large t region to satisfy $N_O=N_\alpha$

Summary

Simple relation between BS wave function inside R and half off-shell scattering amplitude H(p;k)

$$H(p;k) = -\int d^3x \ e^{-i\vec{p}\cdot\vec{x}}h(x;k), \quad H(k;k) = \frac{4\pi}{k}e^{i\delta(k)}\sin\delta(k)$$

Reduced BS wave function $h(x; k) = (\Delta + k^2)\phi(x; k)$

exploratory study: next talk by Namekawa

might be possible to derive similar relations in more than two particles

$$\overline{\delta}(p)$$
 from Shrödinger equation with $V(x;k) = h(x;k)/\phi(x;k)$
At $p = k$, $\overline{\delta}(k) = \delta(k)$, but at $p \neq k$, $\overline{\delta}(p) \neq \delta(p)$.

Derivative expansion of h(x; k)

- convergence is unclear.
- \bullet $V_n(x)$ depends on k if truncated in finite Δ^n terms
- ullet time-dependent HALQCD method: same necessary condition to GEVP ullet large t data necessary as in calculation of energy